
1

Shader Driven Compilation of
Rendering Assets

Paul Lalonde
Eric Schenk

Electronic Arts (Canada) Inc.

Motivation
• We want high level API: models more than

vertices
• We would like a cross-platform system
• We also want low-level features that are

not cross platform
• High performance requires out-of-API

knowledge
• Less programmer involvement in shader

selection

Target Hardware

• Sony PS2, Microsoft Xbox, Nintendo GC,
Microsoft DX8 PC

• Common Characteristics:
– CPU and GPU connected by narrow bus
– GPU is programmable
– Texture combining is a post-GPU step

(our system does not address pixel to vertex shader
feedback)

• Avoid read/compute/write/submit-to-GPU
– Avoid touching data twice

Display Lists and Scene Graphs

• OpenGL and DirectX display lists can be
efficient, but must be constructed by a
program
– More efficient because they save many

function calls for subsequent submissions.
• Iris Performer forces direct-mode

geometry submission in exchange for
hardware state change reduction.

Shader Compilers

• Might produce cross-platform shaders
• Address specification and construction of

efficient shaders
• Do not address the layout of rendering

data
– No automatic system to connect model data

to shaders
• Do not address offline data transforms

Let’s Compile Art
• Encode out-of-API hardware performance

issues in the Compiler
– Cache sizes
– Cost of state changes
– Memory bandwidth

• Be aware of user constructs, such as
models

• Perform offline transforms
• Generate code to hook model data to

shaders

2

Properties of Game Art
• Fixed topology
• Come in atomic bundles: Models

– Multiple shaders per model
• Game AI controls many attributes

– Skeleton pose
– Morph weighting
– Shader variables

Mapping Art to Shaders
• Three kinds of shader inputs

– Source art that is opaque
• Coordinates, normals, colours

– Source art modified by the user at runtime
• Some coordinates, colours
• Often default parameters (lighting, …)
• State information (shading modes, textures)

– Runtime values used for control
• Tranformation matrices, matrix palettes

• How do we link art to shaders?

The Render Method

• Extend a shader to include:
– Input specifications
– Offline transformations

• Make it re-usable with different art
• Use the Render Method both in runtime

and in the Compiler
• Unfortunately platform specific

Render Method – Inputs
• Lists data elements required from the

source art
• Inputs are platform independent

Rendermethod gouraud {
inputs {

Coordinate4 Coordinates;
ColourARGB Colour;
Char GeometryName;
int nVerts;

}…
}

Render Method – Variables

Rendermethod gouraud {…
variables {
extern volatile Matrix Xf = View::Xf;
Coord3Colour coords[nVerts]

= Pack3(Coordinates, Colours);
export modifiable State

GeometryName::state;
noupload RenderBuffer output[nVerts];
}…
}

• Transforms input data to shader data
Render Method – Computations

Rendermethod gouraud {…
Computations {
XCProject(nVerts, coords, Xf, output);
XGKick(GeometryName::state);
XGKick(output);
}
}

• Computations are macro expanded to
make shaders

3

Front End

Packet Compiler

0010101001
0100100001
1111101011
1001011101
11101010

Byte Code
Interpreter

Rendering
Hardware

Frame
Buffer

Compiler

Runtime

Shaders
Byte code,

hardware specific
data structures,

and shaders

Packets made of
fragments of art

asset using a
single render

method

Art assets
and render

methods

Runtime
evaluation

Compilation
Process

Compiler Front End
• We compile from an art package agnostic

intermediate form
• FE breaks models into per-render method

classes
• Vertices may be reordered for cache

optimization (tri-strips, meshes, etc)
• Classes are broken to fit hardware and

rendermethod constraints (eg, skinning
palettes), into streams of packets

Packet Compiler

• For each packet stream
– Reorder to minimize state changes

• Model draw is atomic

• Per packet
– Execute data transforms
– Generate platform specific data structures
– Generate platform specific byte code

Code Generation

• Generate a byte-code program to render
each packet
– Byte code used to exploit ICache coherence
– Program attaches data elements to shader
– Instructions relate to accumulating hardware

data structures and setting state

Global Optimizations

• Optimizations encode much platform
specific out-of-API knowledge
– Remove redundant state settings
– Remove redundant instructions
– Remove redundant data transfers
– Merge DMA chains

• After Optimization, Emit.
– We generate ELF files to facilitate linkage

Results

• Easy to port
– 3 Man-months to a new platform
– Games port in 1-2 man-months

• Render Methods have been used for many
custom features

4

Results II

26.3/36.210.3/10.915.9/20.924.1/46.1PC
NA/NA7.2/NA10.3/NA18.7/NANGC

63.9/93.814.2/30.322.4/43.447.2/91.4Xbox
25.2/31.88.5/11.510.9/14.717.0/22.6PS2
GouraudSkinnedLitGouraudPlatform

Millions of Polygons per sec/Millions of Vertices per sec
Figures date from November 2001

Future Directions

• Runtime/Just in time compilation
• Ease of use for dynamic topology
• Incremental compilation for rapid art

iteration
• Cross-platform Render Methods

Video Not Available
• 2 Mins

